Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Article in English | MEDLINE | ID: mdl-38522649

ABSTRACT

BACKGROUND: Females are more likely to develop posttraumatic stress disorder (PTSD) than males. Impaired inhibition has been identified as mechanism for PTSD development, but studies on the potential sex differences of this neurobiological mechanism and how it relates to PTSD severity and progression are sparse. Here we examined sex differences in neural activation during response inhibition and PTSD following recent trauma. METHODS: Participants (N= 205, 138 female sex assigned at birth) were recruited from emergency departments within 72 hours of a traumatic event. PTSD symptoms were assessed 2-weeks and 6-months post-trauma. A Go/NoGo task was performed 2-weeks post-trauma in a 3T MRI scanner to measure neural activity during response inhibition in the ventromedial prefrontal cortex (vmPFC), right inferior frontal gyrus (rIFG), and the bilateral hippocampus. General Linear models were used to examine the interaction effect of sex on the relationship between our regions of interest (ROIs) and the whole brain, and PTSD symptoms at 6-months, and symptom progression between 2-weeks and 6-months. RESULTS: Lower response-inhibition-related vmPFC activation 2-weeks post-trauma predicted more PTSD symptoms at 6-months in females but not in males, while greater response-inhibition-related rIFG activation predicted lower PTSD symptom progression in males but not females. Whole brain interaction effects were observed in the medial temporal gyrus and left precentral gyrus. CONCLUSIONS: There are sex differences in the relationship between inhibition-related brain activation and PTSD symptom severity and progression. These findings suggest that sex differences should be assessed in future PTSD studies and reveal potential targets for sex-specific interventions.

2.
Womens Health Rep (New Rochelle) ; 5(1): 231-241, 2024.
Article in English | MEDLINE | ID: mdl-38523844

ABSTRACT

Background: The prevalence of posttraumatic stress disorder (PTSD) among people living with HIV (PLWH) is higher than in the general population and can impact health behaviors. The influence of HIV on PTSD psychophysiology requires further investigation due to implications for the treatment of PTSD in PLWH. Objective: Utilizing fear-potentiated startle (FPS), we aimed to interrogate the influence of PTSD and HIV on fear responses. Materials and Methods: Women (18-65 years of age) recruited from the Women's Interagency HIV Study in Atlanta, GA (n = 70, 26 without HIV and 44 with HIV), provided informed consent and completed a semistructured interview to assess trauma exposure and PTSD symptom severity. Participants also underwent an FPS paradigm to assess fear acquisition and extinction: Psychophysiological indices that measure how individuals learn new fear and then subsequently attempt to suppress this fear. Results: Women with PTSD, who did not have HIV, exhibited a greater startle response compared to women without PTSD or HIV during late acquisition to both the danger cue, reinforced conditioned stimulus (CS+, p = 0.013)), and the safety cue, non-reinforced conditioned stimulus (CS-, p = 0.046)), whereas women living with HIV (WLH) and PTSD demonstrated blunted fear responses compared to women with PTSD only. During extinction, WLH comorbid with PTSD exhibited an increased fear response during the extinction period in comparison to all other groups (p = 0.023). Women without PTSD demonstrated a reduction in the fear response during extinction regardless of HIV status. Conclusion: Our findings indicate that HIV further modifies fear psychophysiology in WLH with comorbid PTSD, highlighting the importance of considering HIV status in conjunction with PTSD treatment.

3.
Mol Psychiatry ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195980

ABSTRACT

Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p-FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.

4.
Psychol Med ; 54(2): 338-349, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37309917

ABSTRACT

BACKGROUND: Several hypotheses may explain the association between substance use, posttraumatic stress disorder (PTSD), and depression. However, few studies have utilized a large multisite dataset to understand this complex relationship. Our study assessed the relationship between alcohol and cannabis use trajectories and PTSD and depression symptoms across 3 months in recently trauma-exposed civilians. METHODS: In total, 1618 (1037 female) participants provided self-report data on past 30-day alcohol and cannabis use and PTSD and depression symptoms during their emergency department (baseline) visit. We reassessed participant's substance use and clinical symptoms 2, 8, and 12 weeks posttrauma. Latent class mixture modeling determined alcohol and cannabis use trajectories in the sample. Changes in PTSD and depression symptoms were assessed across alcohol and cannabis use trajectories via a mixed-model repeated-measures analysis of variance. RESULTS: Three trajectory classes (low, high, increasing use) provided the best model fit for alcohol and cannabis use. The low alcohol use class exhibited lower PTSD symptoms at baseline than the high use class; the low cannabis use class exhibited lower PTSD and depression symptoms at baseline than the high and increasing use classes; these symptoms greatly increased at week 8 and declined at week 12. Participants who already use alcohol and cannabis exhibited greater PTSD and depression symptoms at baseline that increased at week 8 with a decrease in symptoms at week 12. CONCLUSIONS: Our findings suggest that alcohol and cannabis use trajectories are associated with the intensity of posttrauma psychopathology. These findings could potentially inform the timing of therapeutic strategies.


Subject(s)
Cannabis , Stress Disorders, Post-Traumatic , Substance-Related Disorders , Humans , Female , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/diagnosis , Depression/diagnosis , Substance-Related Disorders/complications , Psychopathology
6.
Neuropsychopharmacology ; 49(1): 128-137, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37217771

ABSTRACT

Accelerated TMS is an emerging application of Transcranial Magnetic Stimulation (TMS) aimed to reduce treatment length and improve response time. Extant literature generally shows similar efficacy and safety profiles compared to the FDA-cleared protocols for TMS to treat major depressive disorder (MDD), yet accelerated TMS research remains at a very early stage in development. The few applied protocols have not been standardized and vary significantly across a set of core elements. In this review, we consider nine elements that include treatment parameters (i.e., frequency and inter-stimulation interval), cumulative exposure (i.e., number of treatment days, sessions per day, and pulses per session), individualized parameters (i.e., treatment target and dose), and brain state (i.e., context and concurrent treatments). Precisely which of these elements is critical and what parameters are most optimal for the treatment of MDD remains unclear. Other important considerations for accelerated TMS include durability of effect, safety profiles as doses increase over time, the possibility and advantage of individualized functional neuronavigation, use of biological readouts, and accessibility for patients most in need of the treatment. Overall, accelerated TMS appears to hold promise to reduce treatment time and achieve rapid reduction in depressive symptoms, but at this time significant work remains to be done. Rigorous clinical trials combining clinical outcomes and neuroscientific measures such as electroencephalogram, magnetic resonance imaging and e-field modeling are needed to define the future of accelerated TMS for MDD.


Subject(s)
Depressive Disorder, Major , Humans , Transcranial Magnetic Stimulation/methods , Depression , Electroencephalography , Prefrontal Cortex/physiology , Treatment Outcome
7.
Biol Psychiatry Glob Open Sci ; 3(4): 705-715, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881578

ABSTRACT

Background: Prior sexual trauma (ST) is associated with greater risk for posttraumatic stress disorder after a subsequent traumatic event; however, the underlying neurobiological mechanisms remain opaque. We investigated longitudinal posttraumatic dysfunction and amygdala functional dynamics following admission to an emergency department for new primarily nonsexual trauma in participants with and without previous ST. Methods: Participants (N = 2178) were recruited following acute trauma exposure (primarily motor vehicle collision). A subset (n = 242) completed magnetic resonance imaging that included a fearful faces task and a resting-state scan 2 weeks after the trauma. We investigated associations between prior ST and several dimensions of posttraumatic symptoms over 6 months. We further assessed amygdala activation and connectivity differences between groups with or without prior ST. Results: Prior ST was associated with greater posttraumatic depression (F1,1120 = 28.35, p = 1.22 × 10-7, ηp2 = 0.06), anxiety (F1,1113 = 17.43, p = 3.21 × 10-5, ηp2 = 0.05), and posttraumatic stress disorder (F1,1027 = 11.34, p = 7.85 × 10-4, ηp2 = 0.04) severity and more maladaptive beliefs about pain (F1,1113 = 8.51, p = .004, ηp2 = 0.02) but was not related to amygdala reactivity to fearful versus neutral faces (all ps > .05). A secondary analysis revealed an interaction between ST and lifetime trauma load on the left amygdala to visual cortex connectivity (peak Z value: -4.41, corrected p < .02). Conclusions: Findings suggest that prior ST is associated with heightened posttraumatic dysfunction following a new trauma exposure but not increased amygdala activity. In addition, ST may interact with lifetime trauma load to alter neural circuitry in visual processing regions following acute trauma exposure. Further research should probe the relationship between trauma type and visual circuitry in the acute aftermath of trauma.

8.
JAMA Netw Open ; 6(9): e2334483, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37721751

ABSTRACT

Importance: Differences in neighborhood socioeconomic characteristics are important considerations in understanding differences in risk vs resilience in mental health. Neighborhood disadvantage is associated with alterations in the function and structure of threat neurocircuitry. Objective: To investigate associations of neighborhood disadvantage with white and gray matter and neural reactivity to positive and negative stimuli in the context of trauma exposure. Design, Setting, and Participants: In this cross-sectional study, survivors of trauma who completed sociodemographic and posttraumatic symptom assessments and neuroimaging were recruited as part of the Advancing Understanding of Recovery After Trauma (AURORA) study between September 2017 and June 2021. Data analysis was performed from October 25, 2022, to February 15, 2023. Exposure: Neighborhood disadvantage was measured with the Area Deprivation Index (ADI) for each participant home address. Main Outcomes and Measures: Participants completed separate threat and reward tasks during functional magnetic resonance imaging. Diffusion-weighted and high-resolution structural images were also collected. Linear models assessed the association of ADI with reactivity, microstructure, and macrostructure of a priori regions of interest after adjusting for income, lifetime trauma, sex at birth, and age. A moderated-mediation model tested whether ADI was associated with neural activity via microstructural changes and if this was modulated by PTSD symptoms. Results: A total of 280 participants (183 females [65.4%]; mean [SD] age, 35.39 [13.29] years) completed the threat task and 244 participants (156 females [63.9%]; mean [SD] age, 35.10 [13.26] years) completed the reward task. Higher ADI (per 1-unit increase) was associated with greater insula (t274 = 3.20; ß = 0.20; corrected P = .008) and anterior cingulate cortex (ACC; t274 = 2.56; ß = 0.16; corrected P = .04) threat-related activity after considering covariates, but ADI was not associated with reward reactivity. Greater disadvantage was also associated with altered microstructure of the cingulum bundle (t274 = 3.48; ß = 0.21; corrected P = .001) and gray matter morphology of the ACC (cortical thickness: t273 = -2.29; ß = -0.13; corrected P = .02; surface area: t273 = 2.53; ß = 0.13; corrected P = .02). The moderated-mediation model revealed that ADI was associated with ACC threat reactivity via cingulum microstructural changes (index of moderated mediation = -0.02). However, this mediation was only present in individuals with greater PTSD symptom severity (at the mean: ß = -0.17; standard error = 0.06, t= -2.28; P = .007; at 1 SD above the mean: ß = -0.28; standard error = 0.08; t = -3.35; P < .001). Conclusions and Relevance: In this study, neighborhood disadvantage was associated with neurobiology that supports threat processing, revealing associations of neighborhood disadvantage with neural susceptibility for PTSD and suggesting how altered structure-function associations may complicate symptoms. Future work should investigate specific components of neighborhood disadvantage that may be associated with these outcomes.


Subject(s)
Gray Matter , Neighborhood Characteristics , Infant, Newborn , Female , Humans , Adult , Cross-Sectional Studies , Gray Matter/diagnostic imaging , Nerve Net , Survivors
10.
Mol Psychiatry ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932158

ABSTRACT

Childhood trauma is a known risk factor for trauma and stress-related disorders in adulthood. However, limited research has investigated the impact of childhood trauma on brain structure linked to later posttraumatic dysfunction. We investigated the effect of childhood trauma on white matter microstructure after recent trauma and its relationship with future posttraumatic dysfunction among trauma-exposed adult participants (n = 202) recruited from emergency departments as part of the AURORA Study. Participants completed self-report scales assessing prior childhood maltreatment within 2-weeks in addition to assessments of PTSD, depression, anxiety, and dissociation symptoms within 6-months of their traumatic event. Fractional anisotropy (FA) obtained from diffusion tensor imaging (DTI) collected at 2-weeks and 6-months was used to index white matter microstructure. Childhood maltreatment load predicted 6-month PTSD symptoms (b = 1.75, SE = 0.78, 95% CI = [0.20, 3.29]) and inversely varied with FA in the bilateral internal capsule (IC) at 2-weeks (p = 0.0294, FDR corrected) and 6-months (p = 0.0238, FDR corrected). We observed a significant indirect effect of childhood maltreatment load on 6-month PTSD symptoms through 2-week IC microstructure (b = 0.37, Boot SE = 0.18, 95% CI = [0.05, 0.76]) that fully mediated the effect of childhood maltreatment load on PCL-5 scores (b = 1.37, SE = 0.79, 95% CI = [-0.18, 2.93]). IC microstructure did not mediate relationships between childhood maltreatment and depressive, anxiety, or dissociative symptomatology. Our findings suggest a unique role for IC microstructure as a stable neural pathway between childhood trauma and future PTSD symptoms following recent trauma. Notably, our work did not support roles of white matter tracts previously found to vary with PTSD symptoms and childhood trauma exposure, including the cingulum bundle, uncinate fasciculus, and corpus callosum. Given the IC contains sensory fibers linked to perception and motor control, childhood maltreatment might impact the neural circuits that relay and process threat-related inputs and responses to trauma.

11.
Mol Psychiatry ; 28(7): 2975-2984, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36725899

ABSTRACT

Considerable racial/ethnic disparities persist in exposure to life stressors and socioeconomic resources that can directly affect threat neurocircuitry, particularly the amygdala, that partially mediates susceptibility to adverse posttraumatic outcomes. Limited work to date, however, has investigated potential racial/ethnic variability in amygdala reactivity or connectivity that may in turn be related to outcomes such as post-traumatic stress disorder (PTSD). Participants from the AURORA study (n = 283), a multisite longitudinal study of trauma outcomes, completed functional magnetic resonance imaging and psychophysiology within approximately two-weeks of trauma exposure. Seed-based amygdala connectivity and amygdala reactivity during passive viewing of fearful and neutral faces were assessed during fMRI. Physiological activity was assessed during Pavlovian threat conditioning. Participants also reported the severity of posttraumatic symptoms 3 and 6 months after trauma. Black individuals showed lower baseline skin conductance levels and startle compared to White individuals, but no differences were observed in physiological reactions to threat. Further, Hispanic and Black participants showed greater amygdala connectivity to regions including the dorsolateral prefrontal cortex (PFC), dorsal anterior cingulate cortex, insula, and cerebellum compared to White participants. No differences were observed in amygdala reactivity to threat. Amygdala connectivity was associated with 3-month PTSD symptoms, but the associations differed by racial/ethnic group and were partly driven by group differences in structural inequities. The present findings suggest variability in tonic neurophysiological arousal in the early aftermath of trauma between racial/ethnic groups, driven by structural inequality, impacts neural processes that mediate susceptibility to later PTSD symptoms.


Subject(s)
Fear , Stress Disorders, Post-Traumatic , Humans , Longitudinal Studies , Fear/physiology , Amygdala , Gyrus Cinguli/pathology , Magnetic Resonance Imaging , Prefrontal Cortex/pathology
12.
Neurosci Biobehav Rev ; 144: 105005, 2023 01.
Article in English | MEDLINE | ID: mdl-36549377

ABSTRACT

Laboratory threat extinction paradigms and exposure-based therapy both involve repeated, safe confrontation with stimuli previously experienced as threatening. This fundamental procedural overlap supports laboratory threat extinction as a compelling analogue of exposure-based therapy. Threat extinction impairments have been detected in clinical anxiety and may contribute to exposure-based therapy non-response and relapse. However, efforts to improve exposure outcomes using techniques that boost extinction - primarily rodent extinction - have largely failed to date, potentially due to fundamental differences between rodent and human neurobiology. In this review, we articulate a comprehensive pre-clinical human research agenda designed to overcome these failures. We describe how connectivity guided depolarizing brain stimulation methods (i.e., TMS and DBS) can be applied concurrently with threat extinction and dual threat reconsolidation-extinction paradigms to causally map human extinction relevant circuits and inform the optimal integration of these methods with exposure-based therapy. We highlight candidate targets including the amygdala, hippocampus, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and mesolimbic structures, and propose hypotheses about how stimulation delivered at specific learning phases could strengthen threat extinction.


Subject(s)
Extinction, Psychological , Magnetic Resonance Imaging , Humans , Extinction, Psychological/physiology , Brain , Prefrontal Cortex/physiology , Amygdala , Brain Mapping
13.
Neuropsychology ; 37(4): 398-408, 2023 May.
Article in English | MEDLINE | ID: mdl-35797175

ABSTRACT

OBJECTIVE: The variety of instruments used to assess posttraumatic stress disorder (PTSD) allows for flexibility, but also creates challenges for data synthesis. The objective of this work was to use a multisite mega analysis to derive quantitative recommendations for equating scores across measures of PTSD severity. METHOD: Empirical Bayes harmonization and linear models were used to describe and mitigate site and covariate effects. Quadratic models for converting scores across PTSD assessments were constructed using bootstrapping and tested on hold out data. RESULTS: We aggregated 17 data sources and compiled an n = 5,634 sample of individuals who were assessed for PTSD symptoms. We confirmed our hypothesis that harmonization and covariate adjustments would significantly improve inference of scores across instruments. Harmonization significantly reduced cross-dataset variance (28%, p < .001), and models for converting scores across instruments were well fit (median R² = 0.985) with an average root mean squared error of 1.46 on sum scores. CONCLUSIONS: These methods allow PTSD symptom severity to be placed on multiple scales and offers interesting empirical perspectives on the role of harmonization in the behavioral sciences. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Stress Disorders, Post-Traumatic , Veterans , Humans , Stress Disorders, Post-Traumatic/diagnosis , Bayes Theorem , Severity of Illness Index
14.
Dev Psychopathol ; 35(3): 1159-1170, 2023 08.
Article in English | MEDLINE | ID: mdl-34689856

ABSTRACT

Early life adversity (ELA) has been linked with increased arousal responses to threat, including increased amygdala reactivity. Effects of ELA on brain function are well recognized, and emerging evidence suggests that caregivers may influence how environmental stressors impact children's brain function. We investigated the hypothesis that positive interaction between mother and child can buffer against ELA effects on children's neural responses to threat, and related symptoms. N = 53 mother-child pairs (children ages 8-14 years) were recruited from an urban population at high risk for violence exposure. Maternal caregiving was measured using the Parenting Questionnaire and in a cooperation challenge task. Children viewed fearful and neutral face stimuli during functional magnetic resonance imaging. Children who experienced greater violence at home showed amygdala sensitization, whereas children experiencing more school and community violence showed amygdala habituation. Sensitization was in turn linked with externalizing symptoms. However, maternal warmth was associated with a normalization of amygdala sensitization in children, and fewer externalizing behaviors prospectively up to 1 year later. Findings suggested that the effects of violence exposure on threat-related neural circuitry depend on trauma context (inside or outside the home) and that primary caregivers can increase resilience.


Subject(s)
Exposure to Violence , Violence , Female , Humans , Mothers , Amygdala/diagnostic imaging , Fear
15.
Front Psychiatry ; 13: 892302, 2022.
Article in English | MEDLINE | ID: mdl-36405926

ABSTRACT

Adverse social exposures (ASEs) such as low income, low educational attainment, and childhood/adult trauma exposure are associated with variability in brain region measurements of gray matter volume (GMV), surface area (SA), and cortical thickness (CT). These CNS morphometries are associated with stress-related psychiatric illnesses and represent endophenotypes of stress-related psychiatric illness development. Epigenetic mechanisms, such as 5-methyl-cytosine (5mC), may contribute to the biological embedding of the environment but are understudied and not well understood. How 5mC relates to CNS endophenotypes of psychiatric illness is also unclear. In 97 female, African American, trauma-exposed participants from the Grady Trauma Project, we examined the associations of childhood trauma burden (CTQ), adult trauma burden, low income, and low education with blood-derived 5mC clusters and variability in brain region measurements in the amygdala, hippocampus, and frontal cortex subregions. To elucidate whether peripheral 5mC indexes central nervous system (CNS) endophenotypes of psychiatric illness, we tested whether 73 brain/blood correlated 5mC clusters, defined by networks of correlated 5mC probes measured on Illumina's HumanMethylation Epic Beadchip, mediated the relationship between ASEs and brain measurements. CTQ was negatively associated with rostral middle frontal gyrus (RMFG) SA (ß =-0.231, p = 0.041). Low income and low education were also associated with SA or CT in a number of brain regions. Seven 5mC clusters were associated with CTQ (pmin = 0.002), two with low education (pmin = 0.010), and three with low income (pmin = 0.007). Two clusters fully mediated the relation between CTQ and RMFG SA, accounting for 47 and 35% of variability, respectively. These clusters were enriched for probes falling in DNA regulatory regions, as well as signal transduction and immune signaling gene ontology functions. Methylome-network analyses showed enrichment of macrophage migration (p = 9 × 10-8), T cell receptor complex (p = 6 × 10-6), and chemokine-mediated signaling (p = 7 × 10-4) pathway enrichment in association with CTQ. Our results support prior work highlighting brain region variability associated with ASEs, while informing a peripheral inflammation-based epigenetic mechanism of biological embedding of such exposures. These findings could also serve to potentiate increased investigation of understudied populations at elevated risk for stress-related psychiatric illness development.

16.
Dev Psychobiol ; 64(7): e22303, 2022 11.
Article in English | MEDLINE | ID: mdl-36282745

ABSTRACT

Parental emotion regulation plays a major role in parent-child interactions, and in turn, neural plasticity in children, particularly during sensitive developmental periods. However, little is known about how parental emotion dysregulation is associated with variation in children's brain structure, which was the goal of this study. Forty-five Black American mother-child dyads were recruited from an intergenerational trauma study; emotion regulation in mothers and their children (age 8-13 years) was assessed. Diffusion-weighted images were collected in children; deterministic tractography was used to reconstruct pathways of relevance to emotion regulation. Metrics of white matter connectivity [fractional anisotropy (FA), mean diffusivity (MD)] were extracted for pathways. Socio-economic variables were also included in statistical models. Maternal emotion dysregulation was the strongest predictor of child fornix MD (r = .35, p = .001), indicating that more severe emotion dysregulation in mothers corresponded with lower fornix connectivity in children. Maternal impulsivity was a strong predictor of child fornix MD (r = .51, p < .001). Maternal emotion dysregulation may adversely influence connectivity of the child.s fornix, a hippocampal-striatal pathway implicated in reward processes; these associations remained even after accounting for other socio-environmental factors. Dysregulated maternal emotions may uniquely impact children's adaptation to trauma/stress by affecting networks that support appetitive processing.


Subject(s)
Emotional Regulation , White Matter , Female , Humans , Child , Adolescent , White Matter/diagnostic imaging , Mothers/psychology , Emotions , Mother-Child Relations/psychology
17.
J Psychiatr Res ; 156: 45-54, 2022 12.
Article in English | MEDLINE | ID: mdl-36242943

ABSTRACT

Anxiety sensitivity, or fear of anxious arousal, is cross-sectionally associated with a wide array of adverse posttraumatic neuropsychiatric sequelae, including symptoms of posttraumatic stress disorder, depression, anxiety, sleep disturbance, pain, and somatization. The current study utilizes a large-scale, multi-site, prospective study of trauma survivors presenting to emergency departments. Hypotheses tested whether elevated anxiety sensitivity in the immediate posttrauma period is associated with more severe and persistent trajectories of common adverse posttraumatic neuropsychiatric sequelae in the eight weeks posttrauma. Participants from the AURORA study (n = 2,269 recruited from 23 emergency departments) completed self-report assessments over eight weeks posttrauma. Associations between heightened anxiety sensitivity and more severe and/or persistent trajectories of trauma-related symptoms identified by growth mixture modeling were analyzed. Anxiety sensitivity assessed two weeks posttrauma was associated with severe and/or persistent posttraumatic stress, depression, anxiety, sleep disturbance, pain, and somatic symptoms in the eight weeks posttrauma. Effect sizes were in the small to medium range in multivariate models accounting for various demographic, trauma-related, pre-trauma mental health-related, and personality-related factors. Anxiety sensitivity may be a useful transdiagnostic risk factor in the immediate posttraumatic period identifying individuals at risk for the development of adverse posttraumatic neuropsychiatric sequelae. Further, considering anxiety sensitivity is malleable via brief intervention, it could be a useful secondary prevention target. Future research should continue to evaluate associations between anxiety sensitivity and trauma-related pathology.


Subject(s)
Pain , Humans , Prospective Studies , Risk Factors
18.
Neuropsychopharmacology ; 47(13): 2213-2220, 2022 12.
Article in English | MEDLINE | ID: mdl-36114284

ABSTRACT

Female individuals are more likely to be diagnosed with PTSD following trauma exposure than males, potentially due, in part, to underlying neurobiological factors. Several brain regions underlying fear learning and expression have previously been associated with PTSD, with the hippocampus, amygdala, dorsal anterior cingulate cortex (dACC), and rostral ACC (rACC) showing altered volume and function in those with PTSD. However, few studies have examined how sex impacts the predictive value of subcortical volumes and cortical thickness in longitudinal PTSD studies. As part of an emergency department study completed at the Grady Trauma Project in Atlanta, GA, N = 93 (40 Female) participants were enrolled within 24 h following a traumatic event. Multi-echo T1-weighted MRI images were collected one-month post-trauma exposure. Bilateral amygdala and hippocampal volumes and rACC and dACC cortical thickness were segmented. To assess the longitudinal course of PTSD, the PTSD Symptom Scale (PSS) was collected 6 months post-trauma. We investigated whether regional volume/thickness interacted with sex to predict later PTSD symptom severity, controlling for PSS score at time of scan, age, race, and trauma type, as well as intracranial volume (ICV) for subcortical volumes. There was a significant interaction between sex and rACC for 6-month PSS, such that right rACC thickness was positively correlated with 6-month PSS scores in females, but not in males. In examining PTSD symptom subtypes and depression symptoms, greater rACC thickness in females predicted greater avoidance symptoms, while smaller rACC thickness in males predicted greater depression symptoms. Amygdala and hippocampus volume and dACC thickness showed no main effect or interaction with sex. The current findings provide evidence for sex-based differences in how brain volume predicts future PTSD severity and symptoms and supports the rACC as being a vital region regarding PTSD. Gender differences should be assessed in future longitudinal PTSD MRI studies for more accurate identification of future PTSD risk following trauma.


Subject(s)
Stress Disorders, Post-Traumatic , Male , Humans , Female , Stress Disorders, Post-Traumatic/diagnostic imaging , Prospective Studies , Sex Factors , Magnetic Resonance Imaging/methods , Risk Factors
19.
Neuropsychopharmacology ; 47(13): 2230-2237, 2022 12.
Article in English | MEDLINE | ID: mdl-36100659

ABSTRACT

Racial discrimination (RD) has been consistently linked to adverse brain health outcomes. These may be due in part to RD effects on neural networks involved with threat appraisal and regulation; RD has been linked to altered activity in the rostral anterior cingulate cortex (rACC) and structural decrements in the anterior cingulum bundle and hippocampus. In the present study, we examined associations of RD with cingulate, hippocampus and amygdala gray matter morphology in a sample of trauma-exposed Black women. Eighty-one Black women aged 19-62 years were recruited as part of an ongoing study of trauma. Participants completed assessments of RD, trauma exposure, and posttraumatic stress disorder (PTSD), and underwent T1-weighted anatomical imaging. Cortical thickness, surface area and gray matter volume were extracted from subregions of cingulate cortex, and gray matter volume was extracted from amygdala and hippocampus, and entered into partial correlation analyses that included RD and other socio-environmental variables. After correction for multiple comparisons and accounting for variance associated with other stressors and socio-environmental factors, participants with more RD exposure showed proportionally lower cortical thickness in the left rACC, caudal ACC, and posterior cingulate cortex (ps < = 0.01). These findings suggest that greater experiences of RD are linked to compromised cingulate gray matter thickness. In the context of earlier findings indicating that RD produces increased response in threat neurocircuitry, our data suggest that RD may increase vulnerability for brain health problems via cingulate cortex alterations. Further research is needed to elucidate biological mechanisms for these changes.


Subject(s)
Racism , Stress Disorders, Post-Traumatic , Humans , Female , Gyrus Cinguli/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Gray Matter/diagnostic imaging , Stress Disorders, Post-Traumatic/diagnostic imaging
20.
Transl Psychiatry ; 12(1): 321, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941117

ABSTRACT

Visual components of trauma memories are often vividly re-experienced by survivors with deleterious consequences for normal function. Neuroimaging research on trauma has primarily focused on threat-processing circuitry as core to trauma-related dysfunction. Conversely, limited attention has been given to visual circuitry which may be particularly relevant to posttraumatic stress disorder (PTSD). Prior work suggests that the ventral visual stream is directly related to the cognitive and affective disturbances observed in PTSD and may be predictive of later symptom expression. The present study used multimodal magnetic resonance imaging data (n = 278) collected two weeks after trauma exposure from the AURORA study, a longitudinal, multisite investigation of adverse posttraumatic neuropsychiatric sequelae. Indices of gray and white matter were combined using data fusion to identify a structural covariance network (SCN) of the ventral visual stream 2 weeks after trauma. Participant's loadings on the SCN were positively associated with both intrusion symptoms and intensity of nightmares. Further, SCN loadings moderated connectivity between a previously observed amygdala-hippocampal functional covariance network and the inferior temporal gyrus. Follow-up MRI data at 6 months showed an inverse relationship between SCN loadings and negative alterations in cognition in mood. Further, individuals who showed decreased strength of the SCN between 2 weeks and 6 months had generally higher PTSD symptom severity over time. The present findings highlight a role for structural integrity of the ventral visual stream in the development of PTSD. The ventral visual stream may be particularly important for the consolidation or retrieval of trauma memories and may contribute to efficient reactivation of visual components of the trauma memory, thereby exacerbating PTSD symptoms. Potentially chronic engagement of the network may lead to reduced structural integrity which becomes a risk factor for lasting PTSD symptoms.


Subject(s)
Dreams , Stress Disorders, Post-Traumatic , Amygdala/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neuroimaging
SELECTION OF CITATIONS
SEARCH DETAIL
...